Iterative solution of rectangular systems of linear algebraic equations
نویسندگان
چکیده
منابع مشابه
Iterative Solution of Linear Systems
Recent advances in the eld of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for non-Hermitian matrices .
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملAn Optimal Linear Estimation Approach to the Parallel Solution of Linear Algebraic Systems of Equations
Resumo Estimação linear ótima estocástica de parâmetros é utilizada para gerar um novo método iterativo, para a solução paralela de sistemas algébricos de equações. No limite, a abordagem proposta leva a algoritmos iterativos que resolvem em paralelo sistemas lineares, variável por variável. É mostrado, tanto no caso de sistemas determinados como no de sistemas indeterminados, que o método iter...
متن کاملIterative Solution of Piecewise Linear Systems
Abstract. The correct formulation of numerical models for free-surface hydrodynamics often requires the solution of special linear systems whose coefficient matrix is a piecewise constant function of the solution itself. In so doing one may prevent the development of unrealistic negative water depths. The resulting piecewise linear systems are equivalent to particular linear complementarity pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1984
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-13-1-527-533